Mechanika samochodowa - kwestie zawieszenia

w cylindrach. Tłoki najczęściej są połączone z wałem korbowym, od którego odbierany jest moment obrotowy. Najbardziej znanymi silnikami tłokowymi są spalinowe silniki tłokowe i silniki parowe tłokowe, jednak termin ten przypisy

Mechanika samochodowa - kwestie zawieszenia wahacze

spalinowe silniki tłokowe

Silnik tłokowy
Silnik tłokowy gwiazdowy
Elementy ruchome silnika rzędowego

Silnik tłokowy ? silnik, który do wytwarzania pracy wykorzystuje tłoki poruszające się w cylindrach. Tłoki najczęściej są połączone z wałem korbowym, od którego odbierany jest moment obrotowy.

Najbardziej znanymi silnikami tłokowymi są spalinowe silniki tłokowe i silniki parowe tłokowe, jednak termin ten przypisywany jest najczęściej już tylko tym pierwszym, między innymi dlatego, że już dawno porzucono prace rozwojowe maszyn parowych.
Klasyfikacja

Ze względu na czynnik roboczy

silniki spalinowe tłokowe
silniki parowe
silniki pneumatyczne
silniki hydrauliczne

Ze względu na ustawienie cylindrów

silniki rzędowe
silniki widlaste (w układzie V)
silniki gwiazdowe
silniki w układzie przeciwsobnym (?bokser?)
silniki w układach specjalnych: dwurzędowy, X i delta

Ze względu na rodzaj ruchu tłoka

silniki z tłokiem posuwisto-zwrotnym
silnik z tłokami przeciwbieżnymi
silniki z tłokiem obrotowym (?silnik Wankla?)

Ze względu na liczbę suwów w cyklu roboczym

silniki dwusuwowe
silniki czterosuwowe

Ze względu na prędkość obrotową (zakresy prędkości determinujące ten podział są bardzo umowne)

silniki szybkoobrotowe
silniki średnioobrotowe
silniki wolnoobrotowe

Ze względu na średnią prędkość tłoka (zakresy prędkości determinujące ten podział są bardzo umowne)

silniki szybkobieżne
silniki średniobieżne
silniki wolnobieżne

Ze względu na sposób prowadzenia tłoka

silniki bezwodzikowe
silniki wodzikowe lub krzyżulcowe (wodzik dwustronny).


Źródło: https://pl.wikipedia.org/wiki/Silnik_t%C5%82okowy


zalety silnika diesla

Wady

Większa emisja tlenków azotu NOx w porównaniu do silników z zapłonem iskrowym, wyposażonych w trójfunkcyjny katalizator spalin. Aby wykluczyć emisję tlenków azotu NOx stosuje się układy recyrkulacji spalin, w nowszych konstrukcjach technologię AdBlue.
Emisja cząstek stałych jeśli silnik nie jest wyposażony w odpowiedni filtr.
Większe koszty produkcji w porównaniu z silnikami benzynowymi.
Większa masa silnika ? sztywniejszy musi być wał korbowy, kadłub silnika z uwagi na wyższe ciśnienia pracy.
Zazwyczaj większa hałaśliwość pracy niż silników benzynowych o tej samej mocy.
Ograniczona maksymalna prędkość obrotowa spowodowana zwłoką zapłonu.
Większe wymagania co do własności olejów silnikowych.
Trudności w uruchomieniu silnika zimą w niskich temperaturach (konieczność podgrzania komory spalania przez świece żarowe). Ta wada została praktycznie wyeliminowana w nowoczesnych konstrukcjach poprzez bardzo szybkie i wydajne świece4.
Wskutek wyższego momentu obrotowego (dla silników o takiej samej mocy maksymalnej) większe obciążenie układu przeniesienia napędu skutkujące, w przypadku zbyt forsownej eksploatacji, szybszym zużyciem elementów współpracujących (skrzynia biegów, sprzęgło, dwumasowe koło zamachowe).
Wrażliwość na niską temperaturę i konieczność stosowania odpowiedniego paliwa zimą.
Spaliny mogą wywoływać raka płuc5.

Zalety

Większa sprawność konwersji energii chemicznej paliwa, a dzięki temu mniejsze zużycie paliwa.
Większa niezawodność pracy silnika (dyskusyjne dla nowoczesnych, skomplikowanych silników z Common Rail i pompowtryskiwaczami)6.
Możliwość pracy w ciężkich warunkach, gdzie wilgoć mogłaby unieruchomić silniki benzynowe, w których potrzebna jest iskra od aparatu zapłonowego.
Ze względu na właściwości palne oleju napędowego mniejsze prawdopodobieństwo samozapłonu (w tym eksplozywnego) przy składowaniu i dostarczaniu paliwa do silnika.
Współczesne silniki Diesla są bardzo rozwinięte technologicznie, co przekłada się na bardzo dobre osiągi tych silników i zastosowania w samochodach wyścigowych jak np. Audi R10. Osiągi te pozostają jednak relatywnie niższe względem silników benzynowych o identycznej pojemności skokowej i podobnym stopniu zaawansowania technologicznego (np. silniki aut F1).
Lepsze warunki pracy turbosprężarki - większa masa spalin i ich niższa temperatura w stosunku do silnika iskrowego.


Źródło: https://pl.wikipedia.org/wiki/Silnik_o_zap%C5%82onie_samoczynnym


Jak dbać o turbo?

Charakterystyka silników turbodoładowanych znacznie różni się od tych wolnossących. Różnice dotyczą nie tylko samej mocy czy dynamiki silnika ale i sposobu jego eksploatacji.

Pierwszą ważną różnicą jest to, że turbosprężarka jest w stanie tłoczyć wystarczająco dużo powietrza dopiero jeśli jej wirnik osiągnie wysoki pułap obrotów. Aby to miało miejsce to silnik musi osiągnąć odpowiednio wysokie obroty. Do tego momentu pracuje jak jednostka wolnossąca - na podciśnieniu. Czas od wolnych obrotów silnika do pułapu doładowania turbiny powoduje efekt "turbo dziury". Dlatego aby silnik osiągał optymalne parametry mocy należy zmieniać biegi tak aby obroty pozostawały w zakresie doładowania.

Drugą ważną różnicą jest to, że za ostra jazda na zimnym silniku lub też natychmiastowe wyłączenie silnika po dłuższej trasie powodują bardzo szybkie zużywanie turbiny. Dzieje się tak dlatego, że sprężarka jest smarowana olejem silnikowym - to jest ten sam obieg. Kiedy olej jest jeszcze zimny to jest zbyt gęsty aby efektywnie smarować turbinę - więc przy pełnych obrotach będzie się ona zacierać. Natomiast po dłuższej jeździe turbina będzie bardzo nagrzana - jeśli nie pozostawimy silnika pracującego przez kilka minut nie zdąży się ona schłodzić - co będzie powodowało uszkodzenia.

Tak więc sposób na zniszczenie turbiny - pełen gaz na zimnym silniku a później po maksymalnym rozgrzaniu - natychmiastowe zgaszenie. Przy takim traktowaniu nawet nowa turbina padnie bardzo szybko.